Exercise 6

Show that if $\operatorname{Re} z_{1}>0$ and $\operatorname{Re} z_{2}>0$, then

$$
\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2},
$$

where principal arguments are used.

Solution

Suppose that $\operatorname{Re} z_{1}>0$ and $\operatorname{Re} z_{2}>0$. Then $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$ lie in the first or fourth quadrants:

$$
\begin{equation*}
-\frac{\pi}{2}<\theta_{1}+2 n_{1} \pi<\frac{\pi}{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{\pi}{2}<\theta_{2}+2 n_{2} \pi<\frac{\pi}{2}, \tag{2}
\end{equation*}
$$

where $n_{1}=0, \pm 1, \pm 2, \ldots$ and $n_{2}=0, \pm 1, \pm 2, \ldots$ We have

$$
\arg z_{1}=\arg r_{1} e^{i \theta_{1}}=\theta_{1}+2 n_{1} \pi .
$$

Since this quantity on the right is between $-\pi / 2$ and $\pi / 2, \arg z_{1}$ can be replaced by the principal $\operatorname{argument} \operatorname{Arg} z_{1}$. (The requirement to use $\operatorname{Arg} z$ is that $-\pi<\operatorname{Arg} z \leq \pi$.)

$$
\arg z_{1}=\operatorname{Arg} z_{1}
$$

Similarly, we have

$$
\arg z_{2}=\arg r_{2} e^{i \theta_{2}}=\theta_{2}+2 n_{2} \pi .
$$

Since this quantity on the right is between $-\pi / 2$ and $\pi / 2, \arg z_{2}$ can be replaced by the principal $\operatorname{argument} \operatorname{Arg} z_{2}$.

$$
\arg z_{2}=\operatorname{Arg} z_{2}
$$

Add each of the sides of inequalities (1) and (2).

$$
\begin{equation*}
-\pi<\theta_{1}+\theta_{2}+2 n_{1} \pi+2 n_{2} \pi<\pi \tag{3}
\end{equation*}
$$

We also have

$$
\begin{aligned}
\arg \left(z_{1} z_{2}\right) & =\arg z_{1}+\arg z_{2} \\
& =\arg r_{1} e^{i \theta_{1}}+\arg r_{2} e^{i \theta_{2}} \\
& =\left(\theta_{1}+2 n_{1} \pi\right)+\left(\theta_{2}+2 n_{2} \pi\right) \\
& =\theta_{1}+\theta_{2}+2 n_{1} \pi+2 n_{2} \pi .
\end{aligned}
$$

Since

$$
-\pi<\arg \left(z_{1} z_{2}\right)<\pi,
$$

$\arg \left(z_{1} z_{2}\right)$ can be replaced by the principal argument $\operatorname{Arg}\left(z_{1} z_{2}\right)$. Therefore, because $\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}$,

$$
\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}
$$

for the case that z_{1} and z_{2} have positive real components.

